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ABSTRACT:
Speech sounds exist in a complex acoustic–phonetic space, and listeners vary in the extent to which they are

sensitive to variability within the speech sound category (“gradience”) and the degree to which they show stable,

consistent responses to phonetic stimuli. Here, we investigate the hypothesis that individual differences in the

perception of the sound categories of one’s language may aid speech-in-noise performance across the adult lifespan.

Declines in speech-in-noise performance are well documented in healthy aging, and are, unsurprisingly, associated

with differences in hearing ability. Nonetheless, hearing status and age are incomplete predictors of speech-in-noise

performance, and long-standing research suggests that this ability draws on more complex cognitive and perceptual

factors. In this study, a group of adults ranging in age from 18 to 67 years performed online assessments designed to

measure phonetic category sensitivity, questionnaires querying recent noise exposure history and demographic fac-

tors, and crucially, a test of speech-in-noise perception. Results show that individual differences in the perception of

two consonant contrasts significantly predict speech-in-noise performance, even after accounting for age and recent

noise exposure history. This finding supports the hypothesis that individual differences in sensitivity to phonetic cat-

egories mediates speech perception in challenging listening situations. VC 2024 Acoustical Society of America.

https://doi.org/10.1121/10.0028583
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I. INTRODUCTION

Perception of the sounds of speech is a prerequisite for

mapping the auditory signal onto meaning. Listeners need to

detect and analyze the fine-grained spectral and temporal

qualities of speech sounds—a process that is complicated by

the presence of background noise. Yet, listeners do not

detect and analyze speech sounds in precisely the same way.

Individual differences in perception of phonetic detail have

been well documented and linked to other aspects of lan-

guage processing (Fuhrmeister et al., 2023; Kapnoula et al.,
2017; Kong and Edwards, 2016). Of interest is how individ-

ual differences in phonetic sensitivity are related to speech

perception-in-noise (SPIN) performance. SPIN declines are

well documented in aging, and crucially, these are not fully

explained by differences in peripheral hearing (e.g.,

Goossens et al., 2017). This leads to the possibility that indi-

vidual differences in sensitivity to the properties of speech

categories might partially account for differences in SPIN,

especially those that emerge as a function of aging.

In this study, we aimed to answer three questions about

individual differences in the perception of phonetic category

structure. First, we asked whether tasks of phonetic category

sensitivity measured by two-alternative forced choice

(2AFC), visual analogue scale (VAS), and AX discrimina-

tion (AX) tasks tap individual differences in shared skills in

perception and representation of phonetic categories, and

further whether these skills are phonetic contrast-specific or

reflect a general trait of the individual. Second, we evaluated

age-related changes to phonetic category sensitivity.

Finally, we asked to what extent individual differences in

performance on these tasks predicts performance on a

speech-in-noise task, after accounting for age and recent

noise exposure.

A. Individual differences in the perception of phonetic
category structure

Classic studies of categorical perception (Liberman

et al., 1957) established that when listeners are asked to

identify sounds drawn from a phonetic continuum, they will

typically show a sharp boundary between categories, exhib-

iting a steep psychometric function. More notably, listeners

also show asymmetric patterns of discrimination, with better

discrimination of sound contrasts that span the category

boundary than those that fall within the category, leading to

the proposal that listeners are either insensitive to variability

within the category, or that this information is discarded as

phonemes and words are identified. These discontinuities, or

warping in sensitivity according to phonetic category struc-

ture, led to the description of phonetic perception as

“categorical.”

Nonetheless, researchers have long noted that listeners

are quite sensitive to within-category phonetic detaila)Email: emily.myers@uconn.edu
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(McMurray et al., 2002; Myers, 2007; Pisoni and Tash,

1974; Toscano et al., 2010), and use within-category vari-

ability when accessing the lexicon (Andruski et al., 1994;

McMurray et al., 2009; Sarrett et al., 2020). Of interest,

when performing behavioral tasks assessing sensitivity to

phonetic detail, listeners show individual differences in the

gradience or categoricity of phonetic sensitivity. As dis-

cussed thoroughly elsewhere (Apfelbaum et al., 2022;

McMurray, 2022), tasks vary in the extent to which they

encourage or afford listeners the option of demonstrating

sensitivity to phonetic gradience. 2AFC tasks (e.g., “do you

hear ‘da’ or ‘ta’?”) force listeners into a binary decision,

such that perception of variability might be masked. As

pointed out by Apfelbaum et al. (2022), a well-defined

boundary between phonetic categories (characterized by a

steep slope in the categorization function) in this task does

not necessarily entail that listeners cannot detect variation

within the category. AX discrimination tasks may have

more power to detect sensitivity to within-category detail; in

these tasks, listeners are asked to decide whether two items

from the same continuum are the same or different, and

responses can be made without reference to any specific cat-

egory label. VAS measures of phonetic sensitivity have

been argued to provide some of the attributes of 2AFC and

discrimination tasks. In this task, listeners are asked to rate

tokens along a scale in terms of their fit to the category

(Kong and Edwards, 2016). Even among typical listeners,

substantial variability has been found in sensitivity to pho-

netic category structure (e.g., Fuhrmeister et al., 2023;

Fuhrmeister and Myers, 2021; Kapnoula et al., 2017;

Kapnoula et al., 2021; Kapnoula and McMurray, 2021;

Kong and Kang, 2023), with some listeners showing a more

graded pattern of sensitivity, and others showing a more cat-

egorical response function.

Individual differences in graded perception (as measured

by the VAS) have some functional consequences for online

language comprehension. Gradient listeners tend to use more

secondary cues to phonetic perception (Kapnoula et al., 2017;

Kapnoula et al., 2021; Kong and Edwards, 2016), and gradi-

ence may aid online lexical access, particularly recovery

from misidentification of words in a “lexical garden path”

paradigm (Kapnoula et al., 2021). Individual differences in

gradience can be seen quite early in the auditory processing

stream, such that gradient listeners show correspondingly gra-

dient patterns of neural responses to voice onset time (VOT)

in the N1 EEG component (Kapnoula and McMurray, 2021).

However, it remains unclear whether patterns of gradience in

the VAS task are characteristics of the listener, or are particu-

lar to the way that the listener processes some very specific

acoustic–phonetic cues but not all (e.g., Kapnoula et al.,
2017; Kapnoula and McMurray, 2021; Fuhrmeister et al.,
2023). Finally, the notion that gradience per se reflects gener-

ally better phonetic processing has not, of yet, been strongly

supported. Gradience has not been shown to correlate well

with speech-in-noise performance (Kapnoula et al., 2017;

Kapnoula et al., 2021), nor with perception of non-native

contrasts (Fuhrmeister et al., 2023).

In addition to the dimension of gradience, listeners also dif-

fer in the degree to which they show trial-to-trial consistency in

rating phonetic tokens (Fuhrmeister et al., 2023; Fuhrmeister

and Myers, 2021; Kapnoula et al., 2017). Notably, some listen-

ers show gradient perceptual patterns alongside highly consistent

responses to each token on the continuum, whereas others show

the same gradient function but much more stochastic or incon-

sistent responses to individual tokens. This notion of “response

consistency” resonates with theories proposing that there are

downstream consequences for individual differences in the sta-

bility of auditory encoding arising early in the auditory process-

ing stream (Centanni et al., 2018; Hornickel and Kraus, 2013;

Neef et al., 2017; Tecoulesco et al., 2020). Indeed, consistency

of brainstem and early cortical responses to repeated auditory

tokens differs in people with a history of language disorder, and

may be modulated by auditory expertise (Krizman et al., 2014;

Skoe and Kraus, 2013). Response consistency in the VAS task

for both stop and fricative continua is linked to individual differ-

ences in the structure of the bilateral transverse temporal gyri

(Fuhrmeister and Myers, 2021), a structure responsible for early

cortical processing of sound. Further, individuals with higher

response consistency on a VAS task were more adept at dis-

criminating an unfamiliar non-native sound contrast

(Fuhrmeister et al., 2023; Honda et al., 2024), suggesting that

stability in the mapping between the auditory input and the per-

ceptual response may allow listeners to tune into the unfamiliar

acoustic details that signal non-native contrasts.

Research thus far corroborates that individual differences

in phonetic judgments do reflect meaningful differences in

how they process the speech signal. Nonetheless, several perti-

nent questions remain that we address in this study. First, while

AX discrimination was classically used to establish patterns of

categorical perception (Liberman et al., 1957), it has not yet

been directly compared to the VAS task. In theory, people

with more gradient VAS patterns should also show better abil-

ity to detect differences between tokens in the AX task, espe-

cially when those tokens fall within a phonetic category. 2AFC

tasks, while also a popular option for studies of phonetic cate-

gory structure, have been argued to underestimate an individu-

al’s ability to detect within-category differences by forcing a

binary response (e.g., Apfelbaum, et al., 2022). Prior studies

comparing slope on the 2AFC task and responses on the VAS

task suggest that slope of the function in 2AFC is more related

to response consistency than gradience (e.g., Kapnoula et al.,
2017). Finally, the jury is still out on whether gradience and

response consistency are a property of individuals or specific

phonetic contrasts. By understanding the relationships between

these measures, we are able to answer how phonetic sensitivity

changes during aging, and how, if at all, these measures relate

to speech-in-noise performance.

B. Changes in sensitivity to phonetic category
structure as a function of aging

During healthy aging, changes in hearing are nearly

inevitable (Goman and Lin, 2016), with more than 25% of

adults having mild-to-moderate hearing declines by the age

of 70. Even among those with relatively intact hearing as
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measured by the pure-tone audiogram, differences in access

to the speech signal can be stark, especially for noise-

masked speech (e.g., Goossens et al., 2017). Of interest,

speech-in-noise performance is only moderately predicted

by pure-tone hearing assessments in aging, suggesting that

age-related changes extend beyond the auditory periphery to

include the neural systems involved in sound-to-meaning

mapping (Anderson et al., 2011; Goossens et al., 2017;

Prendergast et al., 2019). Changes in sensitivity to phonetic

category structure have been investigated during childhood

and adolescence (McMurray et al., 2018), with evidence show-

ing increasingly gradient sensitivity as children gain experience

with their native language (see McMurray, 2022, for review).

Comparing older and younger adults in 2AFC tasks, older

adults have been reported to show shifted boundary locations

for stop consonants, a fricative/affricate contrast, and a stop-

glide contrast (Baum, 2003; Dorman et al., 1985; Gordon-

Salant et al., 2006). These findings might reflect changes in

sensitivity or resolution of certain types of cues, especially

those that rely on temporal distinctions (Gordon-Salant et al.,
2006). Notably, however, the slope of these functions is quite

stable across age (Dorman et al., 1985; Gordon-Salant et al.,
2006), suggesting that although older adults may rely on some-

what different cues, on balance, categorization decisions

remain stable among older adults with hearing within normal

limits. Mattys and Scharenborg (2014) also incorporated an

AX discrimination task on a nasal contrast, showing that older

adults were somewhat less sensitive across the continuum, but

age-related differences were not stark. To our knowledge, no

studies have investigated changes in gradient phonetic percep-

tion using a VAS task as a function of age across the adult

lifespan.

We can imagine several patterns that might be associ-

ated with aging. First, if age-related declines in peripheral

and central auditory function result in less neural stability in

the auditory system (Skoe et al., 2015), we might observe

decreased behavioral response consistency in the VAS,

poorer sensitivity to subtle acoustic differences in AX dis-

crimination, and a flattening of the categorization function

in the 2AFC task. Second, age-related hearing threshold

changes tend to affect higher frequencies first, which might

lead to less sensitivity to specific contrasts that are distin-

guished by high-frequency information, for instance, the

fricative /s/–/
Ð

/ contrast used in this study. Notably, how-

ever, language ability is among the best-preserved functions

during healthy aging (Ansado et al., 2013; Diaz et al., 2021)

and increased experience with a language over one’s life-

span might actually serve to fine-tune and stabilize native

phonetic category representations, leading to the opposite

patterns from the patterns described above.

C. Consequences of individual differences in
phonetic perception for speech-in-noise processing

Comprehension of speech-in-noise is cognitively and

perceptually demanding (Peelle, 2018). Understanding

speech in a noisy environment depends not only on the audi-

bility of the signal but also on attention, working memory,

and a host of other capacities that help the listener direct

attention to the most relevant portions of the acoustic signal

(Pichora-Fuller et al., 2016). It is less well understood how

individual differences in sensitivity to phonetic category

structure (e.g., perception of small differences within the

category; consistent perceptual responses to speech) might

play out in speech-in-noise processing. In theory, a listener

who is sensitive to fine-grained details of speech may be bet-

ter equipped to detect these properties when mixed with

noise. Similarly, a listener with greater consistency in their

perceptual response to speech may be able to calibrate to

noise levels more accurately in service of separating the

speech signal from noise.

As described above, evidence thus far linking gradient

phonetic perception to speech-in-noise performance has

been weak (Kapnoula et al., 2017) or absent (Kapnoula

et al., 2021). However, perception of speech-in-noise was

not the primary goal of previous studies, and the more lim-

ited age range in this prior work might limit variability in

speech-in-noise performance to the extent that an associa-

tion would be difficult to find. In the current study, we col-

lected data from adult participants performing 2AFC, VAS,

and AX discrimination tasks on two phonetic contrasts, a

stop place-of- articulation contrast (“ba”–“da”), and a frica-

tive place-of-articulation continuum (“sign”–“shine”). Our

expanded age range (18–67 years) also allowed us to tap

into greater variability in speech-in-noise performance and

we controlled for exposure to environmental noise over the

previous 12 month window, given that experience in noisy

environments is linked to speech-in-noise ability (Liberman,

2017; Prendergast et al., 2019; Skoe et al., 2015; but cf.

Shehabi et al., 2022). We predicted that individual differ-

ences, especially in response consistency, but potentially

also discrimination accuracy, would be related to differences

in speech-in-noise performance after accounting for age and

noise exposure.

This dataset allows us to pursue three questions. First,

we ask how 2AFC, VAS, and AX performance relate to

each other, specifically testing the hypothesis that discrimi-

nation as measured by AX will correlate with slope in the

VAS task, and asking whether individual differences in pho-

netic tasks cluster by phonetic contrast. Second, we ask how

behavior on phonetic tasks changes over the course of aging.

Finally, we ask whether (and which) phonetic tasks best pre-

dict speech-in-noise performance.

II. METHODS

A. Participants

Participants were recruited from the online recruitment

platform, Prolific, for online testing. The study was adver-

tised to adult participants who reported being native, mono-

lingual speakers of English and living in the U.S. Subjects

gave informed consent according to the guidelines of the

UConn Institutional Review Board and were compensated

$10/h for their participation.
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Participants were recruited in five age bands from

18–67 years, and data collection continued until each age

band contained at least 19 usable participants. A total of 143

participants completed all study procedures. Data quality

checks (see Sec. II B 3) led to the elimination of 17 partici-

pants. Another ten participants were excluded for failing the

headphone check (see Sec. II B 1) resulting in 116 partici-

pants whose data ultimately contributed to subsequent anal-

yses (female¼ 74, male¼ 42; see Table I for complete

participant demographics). Participants recruited from

Prolific often have substantial experience participating in

behavioral studies. Our participants were no exception: data

extracted from Prolific indicates that on average, our subject

pool has been approved for completing an average of 457

studies on Prolific, with high participant ratings.1

B. Procedure

1. First steps and headphone check

A schematic of the study procedures can be found in

Fig. 1. Study participants were required to use either a lap-

top or desktop computer (i.e., no mobile devices), and were

instructed to wear headphones. After providing informed

consent, participants were directed to the online experimen-

tal software platform, Gorilla (Anwyl-Irvine et al., 2020).

First, participants were directed to a headphone check

described by Woods et al. (2017). Participants were

instructed to initially set their volume to approximately

25%, listen to a burst of white noise, and then adjust their

computer’s volume until it was a comfortable listening

level. Participants were then instructed to listen to three

tones of various intensities and select which tone was the

softest. This headphone check uses phase cancellation such

that participants would only perceive the softest tone as

being the softest if they were wearing headphones. If a par-

ticipant passed the headphone check (i.e., selected the cor-

rect tone in at least four out of six trials), they continued on

with the study and completed a series of questionnaires. If a

participant failed the headphone check (i.e., selected the cor-

rect tone in less than four trials), they were reminded that it

was important to wear headphones, and then completed the

headphone check a second time. If a participant failed the

headphone check a second time, they were allowed to con-

tinue with the experiment, but their data were excluded

from subsequent analyses.

2. Questionnaire data

Next, participants were directed to a series of question-

naires to collect basic demographic data, experience with

musical training, experience with languages other than

English, and the Noise Exposure Questionnaire (NEQ)

(Johnson et al., 2017). Data on musical experience and lan-

guage backgrounds are beyond the scope of the current

investigation.2

The NEQ is a short survey developed as a low-cost and

rapid way to estimate environmental noise exposure risk.

The NEQ estimates annual noise exposure (ANE) based on

self-reported frequency engaging in noisy activities (e.g.,

attending events with amplified music, riding motorized

vehicles, using power tools, wearing personal listening devi-

ces, and playing a musical instrument) during the past

12 months. ANE is estimated using representative sound

TABLE I. Demographic characteristics of the sample that contributed to all subsequent analyses. Speech-in-noise performance score represents the signal-

to-noise ratio (SNR) at which 50% of the key words are correctly repeated, with lower scores indicating better performance. Refer to text for descriptions of

the noise exposure metrics.

By age bands: 18-27, N¼ 26a 28-37, N¼ 19a 38-47, N¼ 25a 48-57, N¼ 24a 58-67, N¼ 22a

Age (years) 23 (21, 25) 30 (29, 33) 42 (39, 44) 52 (50, 55) 62 (60, 64)

Sex

Female 17 (65%) 7 (37%) 13 (52%) 20 (83%) 17 (77%)

Male 9 (35%) 12 (63%) 12 (48%) 4 (17%) 5 (23%)

Childhood caregiver education (years) 14 (12, 16) 14 (13, 16) 14 (12, 16) 12 (12, 15) 12 (12, 16)

Speech-in-noise score 1.13 (0.00, 2.19) 0.25 (-0.50, 1.25) 1.00 (0.25, 3.50) 1.00 (0.75, 2.44) 1.50 (0.56, 3.69)

Annual noise exposure (ANE)

estimate (dB LAeq8760h)

71.6 (69.6, 74.6) 70.6 (68.8, 77.1) 70.1 (67.5, 72.9) 70.0 (65.7, 75.8) 66.1 (64.7, 70.9)

Noise exposure dose (%) 18 (12, 37) 14 (9, 66) 13 (7, 25) 12 (5, 48) 5 (4, 17)

aMedian (inter-quartile range); n (%).

FIG. 1. (Color online) Task schematic. Participants performed tasks from

top to bottom according to the left-hand column. Phonetic tasks were con-

ducted for both “ba”–“da” and “sign”–“shine” continua, using a counterbal-

anced Latin squares design (see the text for details).
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levels from the literature for each activity type. ANE is

expressed in dB LAeq8760h, and represents the continuous

sound level averaged over 8760 (24 h � 365 days) hours

using a 3 dB exchange rate and A-weighted sound levels.

Refer to Johnson et al. (2017) for details. From the decibel

estimate, a noise dose is then derived, with 79 dB

LAeq8760h corresponding to the National Institute for

Occupational Safety and Health (NIOSH) recommended

exposure limit, i.e., 100% dose. Doses above 100% place

the listener at increased risk of noise-induced hearing loss.

For the purposes of interpreting the NEQ data, it is impor-

tant to note that the online data collection occurred between

November 11, 2020 and February 4, 2021.

3. Phonetic decision tasks

Immediately before completing the phonetic decision

tasks, participants were given the opportunity to adjust their

volume. Participants were presented with an audio token at

the same intensity of the phonetic stimuli and were

instructed to adjust their volume until it was “comfortably

loud” and they could “hear the sound easily.” Participants

completed three different phonetic decision tasks: a 2AFC

task, a discrete version of the VAS task, and an AX task.

Participants heard stimuli drawn from a voiced stop contin-

uum (“ba” to “da”) as well as a fricative place-of-articula-

tion continuum (“sign” to “shine”). The order of the tasks

was in a fixed sequence, but we used a Latin squares proce-

dure to counterbalance which task served as the start point

in the sequence. Namely, given the task order represented as

ABCDEF, participants were counterbalanced across orders

ABCDEF, BCDEFA, CDEFAB, etc. The fixed task order

was: VAS: ba-da, VAS: sign-shine, 2AFC: ba-da, 2AFC:

sign-shine, AX: ba-da, and AX: sign-shine. This ordering

meant that participants almost always performed the

“ba”–“da” version of the task before the “sign”–“shine” ver-

sion of the task. Below we describe the characteristics of the

phonetic stimuli as well as the specific tasks.

Phonetic continua. A seven-point continuum from /ba/

to /da/ was synthesized at Haskins Laboratories using a

Klatt synthesizer (Klatt, 1980). This continuum manipulates

the trajectory of the first and second formants, and the vowel

information after the initial short transition is shared across

all stimuli (see Supplementary Material for details). A con-

tinuum from “sign” to “shine” was created by modifying

naturally produced tokens of “sign” and “shine.” Stimuli

were produced by a female, native speaker of English, and

the initial fricative was excised. Blends of the excised /s/

and /
Ð

/ tokens were created through waveform averaging

using Praat (Boersma and Weenink, 2013) to create blends

from 80% /s/ in 10% steps. These fricative blends were re-

concatenated onto to the original “-ign” file, resulting in a

seven-point perceptual continuum extending from “sign” to

“shine.” Stimuli were selected such that no more than two

tokens on each end of the continuum received fairly unam-

biguous judgements, in order to optimize sampling of the

more variable responses to tokens approaching the category

boundary.

2AFC. Participants heard 15 instances of each point

along the seven-point continuum, presented in random

order, for a total of 105 trials per continuum. For each token,

the listener was asked to categorize the token (e.g., “ba” or

“da”?) by pressing a corresponding button on the keyboard.

The dependent measure was the participant response for

each token. To ensure that participants perceived the end

points of the continuum at above-chance levels, only partici-

pants who correctly categorized end point tokens at least

60% of the time were included in the study. This led to the

exclusion of nine participants on the basis of the “ba”–“da”

continuum, and one additional participant on the basis of the

“sign”–“shine” continuum. Individual data and mean

response curves by age band are plotted in Fig. 2.

VAS. Participants completed a “discretized” version of

the visual analogue scale task (cf. Kapnoula et al., 2017;

Fuhrmeister et al., 2023). In the original version of the VAS,

participants are asked to rate each token from “most {ba/

sign}-like” to “most {da/shine}-like” along a continuous scale

by moving a slider. In our version of the task, adapted for eas-

ier online administration, participants instead rated tokens

along a seven-point numeric scale. Participants heard 15

examples of each point on the phonetic continuum, presented

in random order, for a total of 105 trials per continuum. Since

there was no in-principle “correct” answer for this task, data

quality checks ensured that participants showed some differ-

ence in rating tokens across the continuum. To pass this qual-

ity check, a participant had to demonstrate a mean difference

of two points along the rating scale for any two continuum

tokens for each continuum. This resulted in the exclusion of

an additional seven participants on the basis of performance

on the “ba”–“da” continuum (five additional participants had

poor VAS data but had already been excluded on the basis of

quality checks for the 2AFC task). Figure 2 displays individ-

ual response curves by continuum as well as mean response

curves aggregated by age band.

AX discrimination (AX). Participants heard two tokens

drawn from the seven-point continuum per trial, separated by a

1000 msec inter-stimulus interval (ISI).3 Stimuli were either

identical (“Same” trials, e.g., ba1-ba1, n¼ 10 per pair), sepa-

rated by one step on the continuum (e.g., ba1-ba2, “One-step”,

n¼ 10 per pair), or two steps on the continuum (e.g., ba1-ba3,

“Two-step”, n¼ 10 per pair). Pairs were presented in both

orders (e.g., ba1-ba3 and ba3-ba1) collapsing across orders for

analysis purposes. Participants completed a total of 180 dis-

crimination trials per continuum. Data were transformed into

d0 scores by subtracting z-scored rates of hits for each different

trial from z-scored rates of false alarms for “same” trials.

Figure 2 displays d0 scores for one-step and two-step trials,

aggregated by age band, for each phonetic continuum.

4. Speech-in-noise test

Participants were administered a modified version of the

Quick Speech-in-Noise test (QuickSINTM Speech-in-Noise
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Test, Etymotic Research, Inc., Etymotic Research, Luci

Hearing LLC, Fort Worth, TX). In this test, participants lis-

tened to 24 fixed-level low-context sentences spoken in

varying degrees of four-talker babble noise (i.e., SNR), rang-

ing from 25 dB (the easiest SNR level) to 0 dB (the hardest

SNR level) in 5 dB intervals. When the QuickSIN is used in

clinical settings, patients verbally repeat each sentence; in

our modified online version of the test, participants were

asked to “repeat” the sentence back verbatim by typing into

a text response field, and then press the enter key once they

were finished to advance to the next sentence. Modeling the

clinical protocol, sentences were divided into four lists with

six sentences, and each sentence within a list was presented

at a different, descending SNR level. QuickSIN lists 1–4

were selected. Within each list, trials were presented in a

fixed order of increasing difficulty, such that the first and

last sentence within each list had a SNR level of 25 and

0 dB, respectively. Each sentence contained five keywords

worth one point each; therefore, participants could earn a

maximum of five points per sentence and a maximum of 30
points per sentence list, based on each keyword correctly
repeated. The total score for each sentence list was sub-
tracted from 25.5 to calculate a participant’s SNR loss.

The SNR loss represents the SNR at which 50% of key-
words can be accurately repeated. Each participant’s average
QuickSIN score was then calculated by averaging their SNR
loss across all four sentence lists, with higher scores indicat-
ing poorer performance.

Participants completed two practice QuickSIN senten-

ces to familiarize themselves with the task (one practice sen-

tence at 25 dB, the other at 5 dB) and adjusted their volume

prior to completing the 24 main trials. Participants were

instructed not to adjust their volume after the practice sen-

tence trials. The test was scored using automatic routines,

then manually checked. Speech-in-noise responses were

scored automatically in R (R Core Team, 2023) to detect

whether each keyword was present in a participant’s

response, regardless of letter case. Each participants’

response received a score of “0” if the keyword was not pre-

sent in their response and a score of “1” if the keyword was

present. After automatic scoring, speech-in-noise data were

then manually checked by one of the authors to validate the

automatic scoring and to rescore any unambiguous typo-

graphical errors or homophone substitutions (e.g., typing

“wait” instead of “weight” or “steal” instead of “steel”) as

correct. Homophones were marked as correct even when

FIG. 2. Behavioral data for phonetic tasks, grouped by age band. Left panel shows data for the “ba”–“da” continuum; right panel shows data for the

“sign”–“shine” continuum. For 2AFC tasks, the y axis indicates proportion. For VAS tasks, this axis indicates the rating position between the two ends of

the continuum. For discrimination, the units displayed are d0 values. Error bars indicate standard error of the mean.
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they produced a semantically or syntactically anomalous

sentence, given that our primary interest was in the acoustic

access to the signal. Because the QuickSIN is designed to be

administered verbally, homophone responses would by defi-

nition sound the same to the rater. Therefore, in this text-

based version, we opted to allow any responses that were

homophones of the intended word. After scoring keywords,

the average speech-in-noise score was calculated as

described above.

C. Analysis approach

All analyses were carried out using R (R Core Team,

2023).

1. Summary individual differences measures for each
phonetic task

To characterize individual differences in the perception

of stop and fricative continua, we computed several sum-

mary measures for each participant and continuum. For the

2AFC task, we used a two-parameter logistic regression to

estimate the slope of the categorization curve at the inflec-

tion point for each continuum and participant. Following

prior work, we estimated two measures for the VAS task:

the slope and response consistency for each participant and

continuum (see Fuhrmeister et al., 2023). The slope was

estimated by fitting a four-parameter logistic regression to

estimate the minimum, maximum, inflection point (bound-

ary), and slope of the response function for each participant

and continuum. Response consistency is estimated by taking

the mean of the squared residuals for each response for each

subject, and can be thought of as a measure of the fit of the

raw data to the estimated response function. This value is

multiplied by –1 so that the lowest values reflect low consis-

tency and higher values reflect higher consistency. For dis-

crimination data, for each participant and continuum, we

calculated a mean sensitivity score by averaging all d0 values

for both one-step and two-step trials, intended to capture

general sensitivity to contrasts across the entire continuum.

We also wished to capture the asymmetry in discrimination

of near-boundary pairs vs within-category pairs that is a

hallmark of categorical perception. Because the precise esti-

mation of the location of the individual phonetic category

boundary (i.e., by using the psychometric function for the

VAS or 2AFC task) can be unreliable if the participant has

an atypical or noisy response function, we opted to calculate

this measure by subtracting the d0 value for the worst-

discriminated one-step pair from the best-discriminated one-

step pair, wherever that pair fell along the continuum. We

refer to this measure as the categoricity measure. Notably,

for the vast majority of participants, the best-discriminated

pair was in the boundary region (involving a token that falls

close to the boundary for that contrast), and the worst-

discriminated pair tended to be distant from the boundary.

Each participant therefore had five distinct phonetic scores

for each of the two continua (2AFC slope, VAS slope, VAS

response consistency, AX sensitivity, and AX categoricity).

These data were joined with measures from the demo-

graphics and questionnaire data, namely age in years, care-

giver education in years, ANE, and the speech-in-noise

score (expressed as SNR loss).

2. Outlier removal and imputation

Outliers were defined as any score that fell more than

2.5 standard deviation (SD) from the group mean. This

resulted in removal of 41 values from the dataset, or 1.7%

of the total data. Missing values were replaced by imputa-

tion using the mice package (van Buuren and Groothuis-

Oudshoorn, 2011) and the predictive mean mapping (PMM)

method to multiply-estimate missing values.

III. RESULTS

A. Relationships between measures of phonetic
category sensitivity

To characterize relationships between phonetic mea-

sures, Pearson correlations between all ten measures (five

different measures, two continua) were calculated (Fig. 3).

Every measure showed a significant relationship with at

least one other measure; notably, all measures for the

“ba”–“da” continuum were correlated at a level of at least

p< 0.05 (uncorrected for multiple comparisons, correlations

between measures taken on the same phonetic contrasts are

highlighted within the dashed boxes), but correlations within

the “sign”–“shine” measures and between phonetic contrasts

were more mixed. Discrimination metrics for “ba”–“da”

correlated not only with both VAS measures but also 2AFC

slope, whereas for “sign”–“shine” discrimination categoric-

ity and mean sensitivity were related to 2AFC slope and

mean sensitivity was related to VAS consistency, but no

relationships with VAS slope were detected.

To address the question of the relationships between

these measures in a more principled way, we performed a

confirmatory factor analysis, comparing two models using

the lavaan package in R (Rosseel, 2012). In the one-factor

model, all behavioral measures loaded on one latent variable

which we term “phonetic skill.” This was compared to the

contrast-specific model where two separate latent variables

were constructed (“ba-da” and “sign-shine”), such that

behavioral measures for each phonetic contrast load on sep-

arate latent variables (see Fig. 4). Models that maximize the

comparative fit index (CFI), and minimize Akaike informa-

tion criterion (AIC) and Bayesian information criterion

(BIC), are judged to be better-fitting. Model fit estimates

suggested that the contrast-specific model was a better fit to

the data (one-factor model: CFI¼ 0.779, AIC¼ 2724.5,

BIC¼ 2779.6; contrast-specific model: CFI¼ 0.888,

AIC¼ 2709.6, BIC¼ 2767.4). This was confirmed by per-

forming a chi-squared test comparing the two models; here,

the two-factor model was a significantly better fit to the data

(v2¼ 16.95, p< 0.001). Significant loadings for the two-

factor model are displayed in Fig. 4.
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B. Differences in sensitivity to phonetic category
structure as a function of aging

Changes in sensitivity to phonetic category structure as

a function of aging were evaluated by entering all phonetic

measures into one model to predict age. Using the lme4
package in R (Bates et al., 2014), we constructed a linear

model in which all ten phonetic measures were entered to

predict age (in years). Given the mild collinearity between

measures (see Fig. 3), we used the step function in the

lmerTest package (Kuznetsova et al., 2017) to iteratively

remove predictors from the model that do not significantly

contribute to model fit. The resultant model (Table II) con-

tained three surviving predictors: 2AFC slope for the

“ba”–“da” continuum, VAS consistency for the “ba”–“da”

continuum, and VAS consistency for the “sign”–“shine”

continuum. Of these, only VAS consistency for the

“sign”–“shine” continuum was significant, with lower con-

sistency associated with advancing age. In general, phonetic

factors accounted for a small proportion of the variance in

age [adjusted R2¼ 0.058, F(3,112¼ 3.39, p¼ 0.021)].

Results of the full model are displayed in Supplementary

Material.

C. Predictors of speech-in-noise performance

Thus far, analyses show that there are mild associations

between phonetic measures, especially between measures

FIG. 3. Correlations between all phonetic decision measures. Upper triangle displays Pearson correlations, lower triangle displays significance codes for p-

values, with p< 0.05¼*, p< 0.01¼**, p< 0.001¼***, p< 0.0001¼****, uncorrected for multiple comparisons.

FIG. 4. Results of a confirmatory factor analysis, constructed with two latent variables, one for sign-shine decisions (ssh) and the other for ba-da decisions

(bada). Phonetic decision measures load on phonetic contrast-specific latent variables. Loadings displayed for all paths. *, significance values.
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assessed on the same contrast, and that in general, these pho-

netic measures are not strongly related to age. Next, we

asked whether individual differences in phonetic measures

predict speech-in-noise performance, together with other

potentially explanatory factors (age, noise exposure, and

childhood caregiver education; a proxy for socio-economic

status that has been suggested to be predictive of language

ability, e.g., Calvo and Bialystok, 2014). We approached

this question in two ways:, first by entering all measures into

the same model, and second by using a principal compo-

nents analysis (PCA) approach to summarize phonetic

scores for use in the regression.

First, we built a model to predict scores on the speech-

in-noise test based on all ten of the phonetic measures, as

well as age, ANE, and childhood caregiver education in

years. As above, we used a backwards-stepping approach in

the step function in lmerTest to drop low-performing predic-

tors from the model. The final model results are displayed in

Table III [adjusted R2¼ 0.25, F(7,108)¼ 6.52, p< 0.001].

Notably, five phonetic measures survive in this model (VAS

consistency and AX categoricity measures, for both con-

tinua, as well as “ba”–“da” 2AFC slope), in addition to age

and noise exposure. Model results before model selection

are reported in Supplementary Material.

Second, acknowledging the degree of overlap between

our phonetic measures, we performed a PCA using singular

value decomposition on all ten phonetic measures using the

prcomp function as part of the stats package, provided in

base R (R Core Team, 2023). Visualizing the top five

dimensions (see Supplementary Material for a table depict-

ing all loadings; Fig. 5 for a visualization of the loadings),

we see that dimension 1, accounting for 28.1% of the vari-

ance, contains loadings from nearly all phonetic measures,

reflecting a high degree of overlap between most measures.

First, we constructed a base model to predict speech-in-

noise performance using age, caregiver education in years,

and noise exposure only. Model comparison using the anova
function in the base R package (R Core Team, 2023), and

showed that adding the top five phonetic dimensions

extracted from the PCA significantly improved model fit

[F(5)¼ 5.3939, p< 0.0005]. Specifically, PCA dimensions

1, 3, 4, and 5, which have fairly heterogeneous loadings

from most phonetic measures, were all significant predictors

of speech-in-noise, even after accounting for demographic

factors [adjusted R2¼ 0.23, F(8,107)¼ 5.21, p< 0.001;

Table IV].

IV. DISCUSSION

Adult listeners are known to vary substantially in their

patterns of phonetic perception, with variability in the

degree of sensitivity to distinctions across acoustic–phonetic

continua, as well as differences in the sharpness of the

boundary between categories. Using three tasks and five

measures of phonetic perception, we found that all extracted

measures (with the exception of “sign”–“shine” VAS slope)

were at least weakly correlated with other phonetic mea-

sures, suggesting that at least some underlying aspects of

phonetic decisions rely on shared mechanisms. Coherence

between tasks performed on the same stimulus set was

stronger than relationships across continua, supporting the

assertion that, rather than fully gradient or fully categorical,

participants may have idiosyncratic patterns of perception

that are fairly specific to certain continua. Counter to predic-

tions, in this study, performance on phonetic tasks did not

TABLE II. Best-fit linear model predicting age from all ten phonetic deci-

sion measures.

Predictor b 95% CI t df p

Intercept 37.18 [29.17, 45.18] 9.20 112 <0.001

ba-da 2AFC slope 0.51 [�0.01, 1.03] 1.94 112 0.055

sign-shine VAS consistency �4.43 [�8.65, �0.21] �2.08 112 0.040*

ba-da VAS consistency 3.67 [�0.99, 8.32] 1.56 112 0.122

TABLE III. Best-fit linear model predicting speech-in-noise score

(expressed as SNR loss), from age, caregiver education, noise exposure,

and all ten phonetic decision measures, best-fit model after backwards-

stepping procedure.

Predictor b 95% CI t df p

Intercept �7.54 [�13.18, �1.89] �2.65 108 0.009

Age 0.04 [0.01, 0.06] 2.88 108 0.005*

Annual noise exposure (ANE) 0.07 [0.01, 0.14] 2.27 108 0.025*

ba-da VAS slope 0.27 [�0.01, 0.56] 1.88 108 0.062

ba-da VAS consistency �0.78 [�1.51, �0.05] �2.12 108 0.037*

sign-shine VAS consistency �0.53 [�1.14, 0.09] �1.70 108 0.092

ba-da AX categoricity �0.69 [�1.10, �0.28] �3.33 108 0.001*

sign-shine AX categoricity 0.64 [0.10, 1.18] 2.34 108 0.021*

FIG. 5. Loadings on each dimension in the PCA analysis of the ten phonetic

decision measures. Overall height of the bar displays the percent variance

explained by each dimension. Colors within the bar show the proportion of

each dimension composed of each corresponding measure.
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differ substantially as a function of age. Perhaps most

importantly, individual differences in phonetic perception

individually and collectively predicted performance on a

speech-in-noise task, even after accounting for age and noise

exposure history, lending support to the hypothesis that dif-

ferences in sensitivity to phonetic detail aids in comprehend-

ing speech in challenging listening conditions. Below, we

discuss the interpretation and implications of these findings.

Although perception of phonetic categories has often

been described as “categorical,” implying an all-or-none

access to the phonetic category, recent attention to this issue

suggests that listeners show substantial sensitivity to acous-

tic variability within the category (Fuhrmeister et al., 2023;

Kapnoula and McMurray, 2021), challenging the entire

notion of “categorical perception” as a phenomenon

(McMurray, 2022). Our data corroborate that listeners show

substantial sensitivity to within-category variation. Note, for

instance, the patterns of discrimination (Fig. 2), with most

tokens showing above-chance discrimination, whether the

pair straddles the category boundary or not (a pattern that is

particularly evident for the fricative continuum). Using the

VAS task, a task argued to afford listeners the opportunity

to demonstrate within-category sensitivity, a wide range of

psychometric functions was observed, with some listeners

responding more or less categorically. Yet others rated

tokens gradiently, showing remarkable correspondence to

their actual position on the acoustic–phonetic continuum.

These tasks have been well-described elsewhere, but our

dataset contributes to two outstanding questions regarding the

underlying skills that are tapped by these tasks. First, we

tested the hypothesis that gradient responses in the VAS task

reflect an ability to discriminate between items along the pho-

netic continuum, and thus should converge with AX discrimi-

nation tasks. Here, results diverged between the two continua.

We found that mean sensitivity to discrimination across the

continuum (“AX sensitivity”) did not relate to the steepness

of the psychometric function in the VAS task (“VAS slope”)

for the fricative, sign-shine continuum, but did correlate with

VAS slope–and indeed with all measures–within the

“ba”–“da” continuum. Correlations here were relatively weak

and diffuse, making it difficult to firmly argue that these tasks

tap distinct aspects of phonetic perception. Second, we asked

whether individual profiles of phonetic perception are best

thought of as a general trait, or whether these profiles more

closely reflect an individual’s response to a specific acoustic–-

phonetic continuum. Here, evidence was also somewhat inter-

mediate between these two options. While the strongest

correlations were between measures tested on the same acous-

tic–phonetic contrast (especially within the “ba”–“da” contin-

uum), between-continuum correlations were weaker (Fig. 3).

In explicit comparisons of these two models using confirma-

tory factor analysis, a “contrast-specific” model where the

tasks loaded on phonetic contrast-specific latent factors was a

better fit to the data than a model where all factors loaded on

one latent factor.

The direction of the relationships between phonetic

decision measures are quite consistent across comparisons.

Listeners who show greater sensitivity in the discrimination

task are also more likely to show a strong discrimination

peak at the category boundary, more likely to show steeper

VAS and 2AFC response functions, and are also more likely

to be consistent responders in the VAS task, particularly

within-contrast. These patterns might reflect subtle differ-

ences in peripheral or central aspects of the auditory system,

differences in how sound is mapped to phonetic category

representations, or (less compellingly) differences in task

strategy that happen to affect multiple tasks.

During development, children show increasingly gradi-

ent patterns of perception as they transition into adolescence

(McMurray et al., 2018). It is unclear whether or how this

trajectory evolves in the adult lifespan. We hypothesized

that well-documented age-related declines in the peripheral

and central auditory system would result in changes in per-

formance on phonetic decision tasks (Slade et al., 2020).

Unexpectedly, age was related to only three phonetic mea-

sures, and only one of these, response consistency on the

sign-shine continuum, was reliably related to age on its

own, with greater age being associated with lower consis-

tency. Of all the measures related to age, this one perhaps

makes the most sense. First, fricative continua rely more

heavily on high-frequency spectral information, and accu-

rate perception of high-frequency information tends to

decline with aging (Slade et al., 2020). Second, neural con-

sistency (i.e., the stability of the response upon repeated

measurement) declines with age (Skoe et al., 2015).

Nonetheless, age-related changes in performance on

phonetic tasks were not striking in our sample. This might

be due to a protective effect of language experience, or to

the fact that our sample extends to age 67, but does not

encompass older ages where sensorineural declines are

more pronounced. Despite there being no striking relation-

ships between age and our phonetic decision measures, age

was nonetheless strongly related to speech-in-noise perfor-

mance This replicates a well-established pattern of

decreased perceptual acuity in noise with age (Slade et al.,
2020; Holder et al., 2018), suggesting that our older adult

sample was not entirely atypical in their perception of

TABLE IV. Linear model predicting speech-in-noise performance score

(expressed as SNR loss) from age, caregiver education, noise exposure, and

the top five dimensions identified by subjecting the ten phonetic decision

measures to PCA. Asterisks indicate predictors that met threshold for signif-

icance (p< 0.05).

Predictor b 95% CI t df p

Intercept �4.66 [�9.97, 0.64] �1.74 107 0.084

Age (years) 0.03 [0.01, 0.06] 2.39 107 0.018*

Annual noise exposure (ANE) 0.09 [0.02, 0.16] 2.68 107 0.008*

Caregiver education (years) �0.10 [�0.25, 0.05] �1.35 107 0.180

Dimension 1 �0.35 [�0.57, �0.12] �3.08 107 0.003*

Dimension 2 �0.16 [�0.47, 0.16] �0.99 107 0.326

Dimension 3 �0.43 [�0.78, �0.08] �2.44 107 0.016*

Dimension 4 0.40 [0.03, 0.78] 2.16 107 0.033*

Dimension 5 0.46 [0.06, 0.85] 2.30 107 0.023*
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speech-in-noise.4 In further support of the typicality of our

dataset, for speech-perception-in-noise performance, we

found an expected relationship with noise exposure, with

more noise exposure relating to worse performance (Casey

et al., 2017; Liberman, 2017).

If individual differences in performance on phonetic

tasks had no consequences for functional outcomes for com-

prehension, these differences would be interesting, but

entirely academic. Instead, as reviewed in Introduction,

VAS measures have been linked to aspects of native and

non-native processing. However, prior attempts to link the

slope of the VAS function to speech-in-noise perception

accuracy showed weak or absent relationships (Kapnoula

et al., 2017; Kapnoula et al., 2021). Here, we used two

approaches to investigate the relationship between phonetic

decisions and speech-in-noise performance. Using a

backwards-stepping linear model selection approach, we

showed that five phonetic decision measures predicted

speech-in-noise performance, even after accounting for age

and noise exposure dose. The steepness of the psychometric

phonetic decision functions (VAS and 2AFC slopes) were

not strong predictors of speech-in-noise (although 2AFC

“ba”–“da” slope did survive model selection)–instead, the

“categoricity” measure in the AX task (both continua) and

response consistency in the VAS task (“ba”–“da”) were

stronger predictors of speech-in-noise performance. In prior

work (Apfelbaum et al., 2022), 2AFC slope was argued to

be more closely related to response consistency than to gra-

dience as measured by VAS slope—in our data, 2AFC slope

was weakly related to both VAS slope and VAS consis-

tency, suggesting that these measures do not cleanly dissoci-

ate. As in prior work, we find that response consistency is a

useful predictor of language tasks (cf. Fuhrmeister et al.,
2023), lending support to the notion that stability in the per-

ceptual response or acuity in detecting acoustic–phonetic

detail may be crucial for efficient mapping of auditory input

onto meaning. A new contribution was the predictive power

of the AX “categoricity” measure. This measure, which

assesses the advantage conferred in discrimination when

tokens cross the category boundary, may reflect an exagger-

ation of perceptual distances near the category boundary,

which may help listeners to tune to critical acoustic–pho-

netic details in the input. An alternative interpretation (and

perhaps more likely given the 1 s ISI in our design) is that

this task taps a listener’s ability to hold auditory detail in

memory, a task that will be easier when the tokens map to

two distinct phonetic categories. Future research, including

investigating relationships between this task and other mea-

sures of auditory memory, will be needed to disambiguate

these options.

Since there was mild collinearity among our set of pho-

netic decision measures, we also employed a PCA approach

to identify common sources of variance within phonetic

measures, essentially creating several phonetic decision

“summary scores” for each participant (see supplementary

material). Here, too, addition of these summary dimensions

explained speech-in-noise perception better than a model

including only age, noise exposure dose, and childhood

caregiver education, with four dimensions (1, 3, 4, and 5)

showing significant contributions. Dimension 1, in particu-

lar, has loadings that are fairly evenly distributed across all

measures except VAS slope for “sign”–“shine” (whereas the

equally well-performing, Dimension 3 primarily loads on

VAS slope for sign-shine), leading to the conclusion that the

cluster of performance identified above may constitute a

general profile of phonetic skill.

Indeed, we cannot rule out the possibility that perfor-

mance on speech-in-noise and phonetic tasks emerge from a

common underlying trait, perhaps related to differences in

auditory acuity, or more elaborated/stable language ability

or working memory–this question awaits further study.

Other limitations of the current dataset include the lack of

hearing screening and a lack of precise control of the audi-

tory testing environment. Although we are confident that

our sample does not include participants with known hear-

ing deficits, age-related hearing deficits often go undiag-

nosed. However, we are dubious that hearing declines, writ

large, account for our results–notably, widespread age-

related declines in phonetic performance were not obvious.

A lack of control of the listening environment is inevitable

for online studies. Results from our labs replicating well-

known phenomena in speech perception (Fuhrmeister et al.,
2023; Luthra et al., 2021) using online testing give us confi-

dence in the quality of online data for speech perception

research. We note that the participants in the current study

are primarily Prolific “super-users” who have participated in

hundreds of online studies, and tend to be very technically

adept. We also required listeners to wear headphones, insti-

tuted a strict check for the presence of headphones, and

allowed listeners to adjust the volume to a comfortable lis-

tening level. Nonetheless, we cannot rule out the possibility

that individual differences in access to the auditory signal

(whether because of hearing status, technological limitations

of headphones, or ambient noise in the test environment)

might explain our results. Indeed, allowing the listener to set

their listening level might, if anything, decrease the effect of

aging. Another study limitation is that the noise exposure

measurement was based on the previous 12 months and

may, for a variety of reasons (including the pandemic condi-

tions under which the data were collected), not be represen-

tative of lifetime noise exposure. Ongoing efforts in our labs

are aimed at these questions.

V. CONCLUSION

In summary, for both a stop continuum and fricative con-

tinuum, we found individual differences across a range of

measurements of phonetic perception. Interestingly,

individual differences in phonetic perception, specifically

measures of consistency in the VAS task and a measure of

near-boundary sensitivity in AX discrimination were found to

predict speech-in-noise performance, suggesting that speech

communication in noise is mediated by the structure of

listeners’ phonetic category representations. The constellation
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of findings suggests, however, that individual differences in

phonetic measures are not listener-level traits (that are fixed

across stimuli); instead, for a given listener, perceptual pat-

terns/strategies appear to be specific to the particular speech

continuum. These continuum-specific listener strategies may

then aggregate with demographic factors (age, noise expo-

sure) to influence the perception of naturalistic speech com-

posed of multiple speech categories (i.e., sentences in

background noise).

SUPPLEMENTARY MATERIAL

See the supplementary material for acoustic details of

the stimuli and tables reporting the full regression models

before model selection procedures.
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